Energy calculations

Ozonation:

- Calculation of required ozone and hydrogen peroxide dose
- Energy requirement for ozone production (15 kWh/kg), hydrogen peroxide production (10 kWh/kg)
- Example: O_3 dose of 1 mg/L = 1g/m³ => 0.015 kWh/m³
- UV/H₂O₂
 - Energy required for hydrogen peroxide production
 - Determination of required fluence

$$\mathsf{H}_{\lambda}^{'avg} = \mathsf{S}_{\lambda} \times \mathsf{H}_{\lambda}^{'} = \frac{1 - 10^{-A_{\lambda}}}{2.303 A_{\lambda}} \mathsf{H}_{\lambda}^{'}; \quad \mathsf{H}_{\lambda}^{'} = \mathsf{H}_{\lambda}^{'avg} / \mathsf{S}_{\lambda}; \quad \mathsf{S}_{\lambda} : \text{ correction factor for matrix}$$

 $A_{\lambda} = a_{\lambda} \times l^{avg}$ A_{λ} : water absorption; a_{λ} : absorption coefficient; I: average pathlength

Energy for x % degradation of compound in kWh/m³:

$$3.6E6 J = 1kWh$$

$$E_{lamp} = \frac{\mathsf{H}_{\lambda}^{'}(x\%)}{\mathsf{I}^{\mathsf{avg}} \times \eta_{UV}} \times \frac{\mathsf{kWh}}{3.6 \times 10^6 \,\mathsf{m3}}; \ \eta_{UV} : \text{ efficiency of lamp, typically 0.3}$$

Energy requirements for UV/H₂O₂ typically 5-20 higher than O₃/H₂O₂